Electromagnetic fields
EM-waves propagationg through space

An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an electromagnetic wave.

The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by Maxwell's equation and the Lorentz force law. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lorentz force law states that a charge subject to an electric field feels a force along the direction of the field, and a charge moving through a magnetic field feels a force that is perpendicular both to the magnetic field and to its direction of motion.

The electromagnetic field is described by classical electrodynamics, an example of a classical field theory. This theory describes many macroscopic physical phenomena accurately. However, it was unable to explain the photoelectric effect and atomic absorption spectroscopy, experiments at the atomic scale. That required the use of quantum mechanics, specifically the quantization of the electromagnetic field and the development of quantum electrodynamics.

Strongly magnetic materials (i.e., ferromagnetic, ferrimagnetic or paramagnetic) have a magnetization that is primarily due to electron spin.

## Transformations of electromagnetic fields ​

Whether a physical effect is attributable to an electric field or to a magnetic field is dependent upon the observer, in a way that special relativity makes mathematically precise. For example, suppose that a laboratory contains a long straight wire that carries an electrical current. In the frame of reference where the laboratory is at rest, the wire is motionless and electrically neutral: the current, composed of negatively charged electrons, moves against a background of positively charged ions, and the densities of positive and negative charges cancel each other out. A test charge near the wire would feel no electrical force from the wire. However, if the test charge is in motion parallel to the current, the situation changes. In the rest frame of the test charge, the positive and negative charges in the wire are moving at different speeds, and so the positive and negative charge distributions are Lorentz-contracted by different amounts. Consequently, the wire has a nonzero net charge density, and the test charge must experience a nonzero electric field and thus a nonzero force. In the rest frame of the laboratory, there is no electric field to explain the test charge being pulled towards or pushed away from the wire. So, an observer in the laboratory rest frame concludes that a magnetic field must be present.

In general, a situation that one observer describes using only an electric field will be described by an observer in a different inertial frame using a combination of electric and magnetic fields. Analogously, a phenomenon that one observer describes using only a magnetic field will be, in a relatively moving reference frame, described by a combination of fields. The rules for relating the fields required in different reference frames are the Lorentz transformations of the fields.

Thus, electrostatics and magnetostatics are now seen as studies of the static EM field when a particular frame has been selected to suppress the other type of field, and since an EM field with both electric and magnetic will appear in any other frame, these "simpler" effects are merely a consequence of different frames of measurement. The fact that the two field variations can be reproduced just by changing the motion of the observer is further evidence that there is only a single actual field involved which is simply being observed differently.

## Reciprocal behavior of electric and magnetic fields ​

The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.

Ampere's Law roughly states that "an electrical current around a loop creates a magnetic field through the loop". Thus, this law can be applied to generate a magnetic field and run an electric motor.

## Behavior of the fields in the absence of charges or currents ​

A linearly polarized electromagnetic plane wave propagating parallel to the z-axis is a possible solution for the electromagnetic wave equations in free space. The electric field, E, and the magnetic field, B, are perpendicular to each other and the direction of propagation.

Maxwell's equations can be combined to derive wave equations. The solutions of these equations take the form of an electromagnetic wave. In a volume of space not containing charges or currents (free space) – that is, where ρ and J are zero, the electric and magnetic fields satisfy these electromagnetic wave equations:

James Clerk Maxwell was the first to obtain this relationship by his completion of Maxwell's equations with the addition of a displacement current term to Ampere's circuital law. This unified the physical understanding of electricity, magnetism, and light: visible light is but one portion of the full range of electromagnetic waves, the electromagnetic spectrum.

## Time-varying EM fields in Maxwell's equations ​

An electromagnetic field very far from currents and charges (sources) is called electromagnetic radiation (EMR) since it radiates from the charges and currents in the source. Such radiation can occur across a wide range of frequencies called the electromagnetic spectrum, including radio waves, microwave, infrared, visible light, ultraviolet light, X-rays, and gamma rays. The many commercial applications of these radiations are discussed in the named and linked articles.

A notable application of visible light is that this type of energy from the Sun powers all life on Earth that either makes or uses oxygen.

A changing electromagnetic field which is physically close to currents and charges (see near and far field for a definition of "close") will have a dipole characteristic that is dominated by either a changing electric dipole, or a changing magnetic dipole. This type of dipole field near sources is called an electromagnetic near-field.

Changing electric dipole fields, as such, are used commercially as near-fields mainly as a source of dielectric heating. Otherwise, they appear parasitically around conductors which absorb EMR, and around antennas which have the purpose of generating EMR at greater distances.

Changing magnetic dipole fields (i.e., magnetic near-fields) are used commercially for many types of magnetic induction devices. These include motors and electrical transformers at low frequencies, and devices such as RFID tags, metal detectors, and MRI scanner coils at higher frequencies.

## Health and safety ​

The potential effects of electromagnetic fields on human health vary widely depending on the frequency, intensity of the fields, and the length of the exposure. Low frequency, low intensity, and short duration exposure to electromagnetic radiation is generally considered safe. On the other hand, radiation from other parts of the electromagnetic spectrum, such as ultraviolet light and gamma rays, are known to cause significant harm in some circumstances.